Aservo[®] EquiHaler[®]

Before we go any further, let's first learn the important terms:

The **breathing zone** is a

space in proximity to a horse's nostrils. Measurements of dust in the air samples directly from the breathing zone most accurately represents the actual level of airborne dust exposure of a horse. i.e. close to the ground eating hay, dust from sweeping or cleaning stalls.¹¹

Before we go any further, let's first learn the important terms:

Inhalableparticles

Particles >10 µm deposit in the upper respiratory tract and larger airways

> Particles 10-6 µm deposit in the larynx, trachea, bronchi, and large bronchioles

Inhalable particles refer to all airborne particulate matter inhaled through the horse's nose. Although natural defenses clear out much of the dust inhaled throughout the day, smaller particles ($\leq 5 \mu m$) can reach deeper into the respiratory tract especially if the horse's defense mechanism is compromised —as in the case of equine asthma.¹

Aservo[®] EquiHaler[®]

Before we go any further, let's first learn the important terms:

Inhalable **Respirable** particles are a fraction of particles inhalable particles and are characterized by their smallsize ($\leq 5 \mu m$) allowing them to reach the lower airway-including potential to reach the gas-exchanging surface in the alveoli. Respirable dust exposure is associated with airway Particles smaller than inflammation in horses. 0.5 µm are likely exhaled back to the environment. Particles 5-1 µm deposit in the small bronchioles and alveoli

Before we go any further, let's first learn the important terms:

WHAT are the environmental factors associated with the development of equine asthma syndrome?

References

- 1. Ivester KM, Couëtil LL, Moore GE. An observational study of environmental exposures, airway cytology, and performance in racing thoroughbreds. *Journal of Veterinary Internal Medicine*. 2018;32(5):1754-1762. doi:10.1111/jvim.15226.
- 2. Gerber V. Sport horse IAD moderate equine asthma? Paper presented at: The World Equine Airway Symposium. 2017; Copenhagen, Denmark.
- 3. Mazan MR, Ceresia ML. Clinical pharmacology of the respiratory system. *Equine Pharmacology*. 2015:138-182. doi:10.1002/9781118845110.ch10.
- 4. Burrell MH, Wood JLN, Whitwell KE, Chanter N, Mackintosh ME, Mumford JA. Respiratory disease in thoroughbred horses in training: the relationships between disease and viruses, bacteria and environment. *Veterinary Record*. 1996;139(13):308-313. doi:10.1136/vr.139.13.308.
- 5. Wasko AJ, Barkema HW, Nicol J, Fernandez N, Logie N, Léguillette R. Evaluation of a risk-screening questionnaire to detect equine lung inflammation: Results of a large field study. *Equine Veterinary Journal*. 2011;43(2):145-152. doi:10.1111/j.2042-3306.2010.00150.x.
- 6. Couetil LL, Ward MP. Analysis of risk factors for recurrent airway obstruction in North American horses: 1,444 cases (1990-1999). *Journal of the American Veterinary Medical Association*. 2003;223(11):1645-1650. doi:10.2460/javma.2003.223.1645.
- 7. Couëtil LL, Hoffman AM, Hodgson J, et al. Inflammatory Airway Disease of Horses. *Journal of Veterinary Internal Medicine*. 2007;21:356-361.doi:10.1892/0891-6640(2007)21[356:iadoh]2.0.co;2.
- 8. Couëtil L, Cardwell J, Gerber V, Lavoie J-P, Léguillette R, Richard E. Inflammatory Airway Disease of Horses-Revised Consensus Statement. *Journal of Veterinary Internal Medicine*. 2016;30:503-515. doi:10.1111/jvim.13824.
- 9. Bond S, Léguillette R, Richard EA, et al. Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. *Journal of Veterinary Internal Medicine*. 2018;32:2088-2098. doi:10.1111/jvim.15302.
- 10. Bosshard S, Gerber V. Evaluation of Coughing and Nasal Discharge as Early Indicators for An Increased Risk to Develop Equine Recurrent Airway Obstruction (RAO). *Journal of Veterinary Internal Medicine*. 2014;28:618-623. doi:10.1111/jvim.12279.

- 11. Art T, McGorum BC, Lekeux P. Environmental Control of Respiratory Disease IVIS. IVIS. http://www.ivis.org/special_books/Lekeux/art2/ivis.pdf?origin=publication_ detail. Published March 20, 2002. Accessed September 18, 2019.
- 12. Pirie RS, Collie DDS, Dixon PM, McGorum BC. Inhaled endotoxin and organic dust particulates have synergistic proinflammatory effects in equine heaves (organic dust-induced asthma). *Clinical Experimental Allergy.* 2003;33:676-683. doi:10.1046/j.1365-2222.2003.01640.x.
- 13. Mazan MR. Therapy and Management of Equine Asthma. Paper presented at: AAEP. 2017;63.
- 14. Ivester K, Couëtil L, Moore G, Zimmerman N, Raskin R. Environmental Exposures and Airway Inflammation in Young Thoroughbred Horses. *Journal of Veterinary Internal Medicine*. 2014;28:918-924. doi:10.1111/jvim.12333.
- 15. Clements J, Pirie R. Respirable dust concentrations in equine stables. Part 2: The benefits of soaking hay and optimising the environment in a neighbouring stable. *Research in Veterinary Science*. 2007;83:263-268. doi:10.1016/j.rvsc.2006.12.003.
- 16. Auger E-J, Moore-Colyer MJS. The Effect of Management Regime on Airborne Respirable Dust Concentrations in Two Different Types of Horse Stable Design. *Journal of Equine Veterinary Science*. 2017;51:105-109. doi:10.1016/j.jevs.2016.12.007.
- 17. Vandenput S, Duvivier DH, Votion D, Art T, Lekeux P. Environmental control to maintain stabled COPD horses in clinical remission: effects on pulmonary function. *Equine Veterinary Journal*. 1998;30(2):93-96. doi:10.1111/j.2042-3306.1998.tb04466.x.
- 18. Swiderski CE, Costa L. Pasture-Associated Asthma. Paper presented at: The 2017 American College of Veterinary Internal Medicine Forum. 2017.
- 19. Gerber, V., Tessier, C. and Marti, E., 2015. Genetics of upper and lower airway diseases in the horse. *Equine veterinary journal*, 47(4), pp.390-397.
- 20. Mazan MR. Update on Noninfectious Inflammatory Diseases of the Lower Airway. *Veterinary Clinics of North America: Equine Practice.* 2015;31:159-185. doi:10.1016/j.cveq.2014.11.008.